
Polymorphism with Typed Holes
Presenters: Adam Chen (Stevens Institute of Technology), Thomas Porter

Non-presenting Author: Cyrus Omar (University of Michigan)

Trends in Functional Programming (TFP)
10 January 2024



Introduction

● Live programming
○ Continuous feedback to programmer.

○ Must address semantics of incomplete programs.

○ Gradual Typing

● History of gradual typing and polymorphism
○ Fulfilling both parametricity and the gradual guarantee is hard.

○ Igarashi et al 2017, New et al 2020, Labrada et al 2022



The System

● Based off the system in Hazelnut Live (PACMPL 2019)

● Core feature: Typed Holes
○ During elaboration, store what type each hole needs to be in a “hole context”.



The System

● User-facing gradually typed calculus
○ Bidirectionally Typed

● Internal cast calculus
○ Terms reduced during execution.

● Add rules for type functions to both.



The System

● Add bidirectional typing rules:

Remark: STLam doubles up on introduction forms, but improves power of system.



The System

● Add elaboration and type assignment rules.
○ Nothing novel, omitted for brevity; see paper for details.

● Add instruction transitions using type substitution.

●

○ Previously avoided due to violating parametricity.



Properties

● Show that we are a conservative extension of the Hazelnut Live System
○ Any term typable by the bidirectional typed system has an elaboration.

○ Any elaborated term comes from a term typable by the bidirectional system.

○ The elaboration is unique.

○ The elaborated term gets assigned a type consistent with the original type.

○ Type assignment is unique.

● Anything true of the cast calculus can be lifted to the gradually typed 

calculus.



Properties

● Type safety: preservation & progress

● Complete type safety: If the program has no holes, execution ends in a value.
○ Generalizes System F.

● Mechanized in Agda
○ (modulo another property that isn’t fully developed yet -- fill and resume)



Parametricity?

● By using substitution typing, we knowingly violate parametricity:
○ 1 <Int => ? => X> 

■ Will succeed if Int is substituted for X.

■ Will cast fail if (e.g.) Bool is substituted for X.

○ Previous authors’ systems force failure in all instantiations.

● We are more permissible in what programs may be evaluated.

● Conjecture: weakening of parametricity.
○ Parametric behavior between terminating programs.

○ No guarantees for erroring executions.



Implementation

● Added to the Hazel live programming environment.

● Live demo available (guided demo now!).

● https://hazel.org/build/poly-adt-after2/
○ Currently in a PR, hopefully merge to dev soon

https://hazel.org/build/poly-adt-after2/


Demo



Implicit Polymorphism

Explicit

● Transparent
● Consistent
● Controllable

Implicit

● Compact
● Flexible



Implicit Polymorphism

Compromise: Automatic Insertions

● Compact (folding)
● Flexible (recomputed)
● Transparent
● Consistent
● Controllable



Implicit Polymorphism
*mockups



Implicit Polymorphism
*mockups



Implicit Polymorphism

Mark Insertion

POPL ‘24



Implicit Polymorphism

Mark Insertion

Judgement form:

Example:



Implicit Polymorphism

Type Application Insertion



Implicit Polymorphism

Type Hole Inference

POPL ‘24:



Implicit Polymorphism

Type Hole Inference

Higher order unification: undecidable

→ Eager substitution

*mockup



Questions?


