Polymorphism with Typed Holes

Presenters: Adam Chen (Stevens Institute of Technolog%/), Thomas Porter
Non-presenting Author: Cyrus Omar (University of Michigan)

Trends in Functional Programming (TFP)
10 January 2024

Introduction

e Live programming
o Continuous feedback to programmer.

o Must address semantics of incomplete programs.

o Gradual Typing
e History of gradual typing and polymorphism

o Fulfilling both parametricity and the gradual guarantee is hard.
o lgarashietal 2017, New et al 2020, Labrada et al 2022

The System

e Based off the system in Hazelnut Live (PACMPL 2019)

e Core feature: Typed Holes

o During elaboration, store what type each hole needs to be in a “hole context”.

2 + in
5'in3*x+2*y

let x
let vy

=3 % (2 + g + 10

The System

e User-facing gradually typed calculus
o Bidirectionally Typed
e Internal cast calculus

o Terms reduced during execution.

e Add rules for type functions to both.

The System

e Add bidirectional typing rules:

2, '+ e = 7 | Expression e synthesizes type 7 in context Z; I

STLAM STAP
Z,a;'Fe=>1 P o 2 ZI'Fe=>1, > \Va. 7,
. 'FAa.e=>Va.t Tk elr] = [7,/alr

2;I' - e < 7 | Expression e analyzes against type 7 in context X; I

ATLAM
>, Va. 7, al'Fe<sr,

;' Aa. e < 7

Remark: STLam doubles up on introduction forms, but improves power of system.

The System

e Add elaboration and type assignment rules.
o Nothing novel, omitted for brevity; see paper for details.
e Add instruction transitions using type substitution.
d — d'’ | d takes an instruction transition to d’
ITTLAM ITTAPCAST

(Aa. d) [t] — [t /ald d{Va,. 7; = Va,. 1,) [t] — d [z{[z /e,]}z, = [7/a,]7,)

O

Previously avoided due to violating parametricity.

Properties

e Show that we are a conservative extension of the Hazelnut Live System

(@)

(@)

(@)

(@)

(@)

Any term typable by the bidirectional typed system has an elaboration.

Any elaborated term comes from a term typable by the bidirectional system.
The elaboration is unique.

The elaborated term gets assigned a type consistent with the original type.

Type assignment is unique.

e Anything true of the cast calculus can be lifted to the gradually typed

calculus.

Properties

e Type safety: preservation & progress

e Complete type safety: If the program has no holes, execution ends in a value.

o Generalizes System F.

e Mechanized in Agda

o (modulo another property that isn’t fully developed yet - fill and resume)

Parametricity?

e By using substitution typing, we knowingly violate parametricity:
o 1 <Int => 7?7 => X>
m Will succeed if Int is substituted for X.
m Wil cast fail if (e.g.) Bool is substituted for X.

o Previous authors’ systems force failure in all instantiations.

e We are more permissible in what programs may be evaluated.

e Conjecture: weakening of parametricity.

o Parametric behavior between terminating programs.

o No guarantees for erroring executions.

Implementation

e Added to the Hazel live programming environment.
e Live demo available (guided demo now!).

e https://hazel.org/build/poly-adt-after2/

o Currently in a PR, hopefully merge to dev soon

https://hazel.org/build/poly-adt-after2/

Demo

Implicit Polymorphism

Explicit Implicit
e T[ransparent e (Compact
e Consistent e Flexible

e Controllable

Implicit Polymorphism

Compromise: Automatic Insertions

Compact (folding)
Flexible (recomputed)
Transparent
Consistent
Controllable

Implicit Polymorphism

*mockups

let map : forall X -> forall Y -> (X -> Y) -> [X] -> [Y] = © 1in
ma@ (string_of_int)([1,2,3,4,5])

EXP 7_) Variable reference : forall X -> forall Y -> (X -> Y) -> [X] -> [Y] with X as Int, Y as String

let map : forall X -> forall V -> (X -> Y) -> [X] -> [Y] = © 1n
map @<Int>@<String> (string_of_int)([1,2,3,4,5])

Q, Automatically inserted type application

Implicit Polymorphism

*mockups

let map : forall X -> forall Y -> (X -> Y) -> [X] -> [Y] = @ 1in
|
map)*(string_of_int)([true, falsel)

EXP Q Variable reference : forall X -> forall Y -> (X -> Y) -> [X] -> [Y] with X unsolved , Y as String

let map : forall X =-> forall Y -> (X -> Y) -> [X] -> [Y] = in

map @<!>@<String> (string_of_int)([true, false])

TYP €2 conflicting constraints Bool Int

Implicit Polymorphism

Mark Insertion

Total Type Error Localization and Recovery with Holes

ERIC ZHAOQO, University of Michigan, USA

RAEF MAROQF, University of Michigan, USA .
ANAND DUKKIPATI, University of Michigan, USA POPL 24
ANDREW BLINN, University of Michigan, USA

ZHIY1 PAN, University of Michigan, USA

CYRUS OMAR, University of Michigan, USA

Implicit Polymorphism Judgement form:

v

Mark Insertion FTFev»e=r1
TFev e =T

Example:

FFey e =7 () A [Fe v é &7

I'Fe e+ (]él[)f;) &y = ?

Implicit Polymorphism

Type Application Insertion

STke v é >t o, Yaop. .ot ITkellle,vpé=>r1

X I'Fe e b é; >,

STke v é >t VHap, ZTkevé,<?

ke je, (]evll): e, > 7

Implicit Polymorphism
Type Hole Inference

POPL ‘24:
let f:{9-= 2 in if © then f(2) else
TYP €li) conflicting constraints Int Int ->

let f:)= 2 if © then f(2) else

.....

conflicting constraints Int Int ->

Implicit Polymorphism

Type Hole Inference
Higher order unification: undecidable

— Eager substitution

let map : forall X => forall Y => (X -> Y) -> [X] -> [Y] = © 1n

nap e<strings (string_of_int)([1,2,3,4,51) smockup

Q Automatically inserted type application

Questions?

